Collaborative Filtering by Analyzing Dynamic User Interests Modeled by Taxonomy
نویسندگان
چکیده
Tracking user interests over time is important for making accurate recommendations. However, the widely-used time-decay-based approach worsens the sparsity problem because it deemphasizes old item transactions. We introduce two ideas to solve the sparsity problem. First, we divide the users’ transactions into epochs i.e. time periods, and identify epochs that are dominated by interests similar to the current interests of the active user. Thus, it can eliminate dissimilar transactions while making use of similar transactions that exist in prior epochs. Second, we use a taxonomy of items to model user item transactions in each epoch. This well captures the interests of users in each epoch even if there are few transactions. It suits the situations in which the items transacted by users dynamically change over time; the semantics behind classes do not change so often while individual items often appear and disappear. Fortunately, many taxonomies are now available on the web because of the spread of the Linked Open Data vision. We can now use those to understand dynamic user interests semantically. We evaluate our method using a dataset, a music listening history, extracted from users’ tweets and one containing a restaurant visit history gathered from a gourmet guide site. The results show that our method predicts user interests much more accurately than the previous time-decay-based method.
منابع مشابه
Modeling and Predicting User Interests based on Taxonomy
In the thesis, we analyze user interests based on a domain specific taxonomy. We propose modeling user interests and measuring similarity of users according to the taxonomy in the domain. Then we apply our method to recommender systems. We propose identifying topics, those that include new concepts that are likely be interesting to the user even though those concepts are not present in the user...
متن کاملAdaptive User Profile Model and Collaborative Filtering for Personalized News
In recent years, personalized news recommendation has received increasing attention in IR community. The core problem of personalized recommendation is to model and track users’ interests and their changes. To address this problem, both content-based filtering (CBF) and collaborative filtering (CF) have been explored. User interests involve interests on fixed categories and dynamic events, yet ...
متن کاملیک سامانه توصیهگر ترکیبی با استفاده از اعتماد و خوشهبندی دوجهته بهمنظور افزایش کارایی پالایشگروهی
In the present era, the amount of information grows exponentially. So, finding the required information among the mass of information has become a major challenge. The success of e-commerce systems and online business transactions depend greatly on the effective design of products recommender mechanism. Providing high quality recommendations is important for e-commerce systems to assist users i...
متن کاملUse of Semantic Similarity and Web Usage Mining to Alleviate the Drawbacks of User-Based Collaborative Filtering Recommender Systems
One of the most famous methods for recommendation is user-based Collaborative Filtering (CF). This system compares active user’s items rating with historical rating records of other users to find similar users and recommending items which seems interesting to these similar users and have not been rated by the active user. As a way of computing recommendations, the ultimate goal of the user-ba...
متن کاملA New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation
Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...
متن کامل